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Abstract. Autonomous racing is a time- and accuracy-critical applica-
tion of vehicle motion planning and control techniques. Despite being
promising for its ability to handle constraints, model predictive control
(MPC) for autonomous racing is limited by the relatively low computa-
tional speed and the problem of model mismatch. In this work, we present
a time-optimal linear-time-variant-MPC (LTV-MPC) that incorporates
a min-time objective function, the friction ellipse constraint, and the
successive linearization over the prediction horizon to improve compu-
tational speed and prediction accuracy. To tackle model mismatch, the
proposed LTV-MPC is further combined with Gaussian process regres-
sion to learn the lateral tire force error. Compensation for the error is
implemented over the prediction horizon and on the friction ellipse con-
straint. This work presents simulation validation on the racing track of
Formula Student Autonomous China (FSAC) and experimental valida-
tion on a self-designed track. We show that compared with nonlinear
MPC, the proposed LTV-MPC reduces the average computation time
from 66 ms to 2.5 ms with a 0.6% increase in lap time. With learned tire
force error, a 2% reduction in lap time can be achieved.

Keywords: Autonomous racing · Autonomous driving · Model
predictive control · Gaussian process regression

1 Introduction

Model predictive control (MPC) is a suitable tool for autonomous racing due
to its ability to handle constraints like vehicle dynamics and track boundaries.
However, the time-optimal control problem for autonomous racing is nonlin-
ear [5]. The direct use of nonlinear MPC (NMPC) leads to high computation
time that is undesirable for racing [3], and the use of linear or adaptive MPC
fails to accurately incorporate nonlinear objectives and constraints. Although
linear-time-variant-MPC (LTV-MPC) can strike a balance between computa-
tional speed and accuracy, it is mainly used in trajectory tracking tasks and its
application to autonomous racing is scarce in the literature.

Another limitation of MPC is model mismatch, which occurs when the control
model differs from the actual plant, causing the degradation of control perfor-
mance. Several techniques, e.g. error observers and Gaussian process regression
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(GPR) [2], are adopted to tackle this issue. However, linear models like error
observers omit the nonlinear portion of the error, and the learning-based method
in [2] that learns the error of all state variables lacks interpretability and hinders
further analysis of model mismatch.

To address the aforementioned problems, this work presents a time-optimal
LTV-MPC with its min-time objective function and friction ellipse constraint
successively linearized over the prediction horizon, and a GPR-based lateral tire
force error model to adjust the control model and friction ellipse constraint.

2 Time-Optimal LTV-MPC Formulation

2.1 Vehicle Control Model

A 3-DOF single-track rear-wheel-drive vehicle dynamics model is adopted:

ẋ =

⎡
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, (1)

where there are eight state variables x = [vx, vy, ψ̇, s, n, χ, T, δ]� and two control
variables u = [Trate, δrate]�, vx, vy, and ψ̇ denote longitudinal velocity, lateral
velocity, and yaw rate in vehicle coordinate frame, s, n, and χ denote vehicle
pose in curvilinear coordinate frame, T and δ denote torque on the rear wheel
and front-wheel steering angle. The above variables are depicted in Fig. 1.

Fig. 1. 3-DOF single-track vehicle model in curvilinear coordinate frame.

In (1), κ(s) is the road curvature at progress s, lf and lr denote the location
of the center of gravity (CoG) behind the front axle and location of CoG in front
of the rear axle, mt and Iz are the total mass of the vehicle and the vehicle
inertia about z axis, Fx = T/R is the longitudinal force of the rear wheel, R is
the tire radius, Fy,i, i = {f, r} are the lateral forces of the front and rear wheels.
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The longitudinal force of the front wheel is assumed to be zero. The lateral forces
are calculated as

Fy,i = fMF,i(αi) = μcFz,iDy sin [Cy atan {Byαi − Ey (Byαi − atan (Byαi))}] ,
(2)

where Fz,f = mtglr/l, Fz,r = mtglf/l, μc is the road adhesion coefficient of
the control model, By, Cy, Dy, and Ey are parameters of the magic formula
(MF) tire model, l is the wheelbase, αf = atan((vy + ψ̇lf )/vx) − δ and αr =
atan((vy − ψ̇lr)/vx) are the slip angles of the front and rear wheels.

2.2 Problem Formulation

The objective function of the time-optimal LTV-MPC is given as

ηtr =
[

1−nκ(s)
vx cosχ−vy sinχ , ψ̇

]�
, ηref = [0, 0]�, (3)

where ηtr is the controlled output vector, ηref contains the desired output values.
The first element in ηtr equals 1/ṡ, which means the time required to progress
1 m in curvilinear coordinate frame. Therefore, its 0 reference value serves the
min-time purpose. The second element in ηtr serves to enhance vehicle stability.

The friction ellipse constraint is formulated as a hard constraint:

ηc =
[

Fx

μcDxFz,r

2
+ Fy,r

μcDyFz,r

2
]�

, (4)

where ηc is the hard constrained output vector, Dx is a parameter of the MF
model. Due to the symmetry of the friction ellipse, the linearized hard con-
strained output is limited between -1 and 1.

The velocity and track constraints are formulated as soft constraints to pre-
vent problem infeasibility when the constraints are temporarily violated by vehi-
cle sensor noise. The soft constrained output vector is given as ηsc = [vx, n]�.
Similar to the curvature κ, the upper and lower bounds for n are functions of s.

The final output vector is the concatenation of controlled, hard constrained,
and soft constrained output vectors η = h(x) = [ηtr,ηc,ηsc]�. For the k-th
(k = 1, · · · ,H) discrete time step in the prediction horizon, the system equation
ẋ = f(x,u) and output equation η = h(x) are linearized at a reference point
[x̂k, ûk]. In this work, it is assumed that the difference between the solution of one
control step and its subsequent (1/f s later, where f is the control frequency) is
small. Therefore, the solution of the last control step is used as the linearization
reference point at the current step. After linearization, the system is discretized
using the explicit fourth-order Runge-Kutta method. We refer the readers to [4]
for further formulation of the LTV-MPC problem.

3 GPR-Based Lateral Tire Force Error Learning

GPR is a non-parametric machine learning method suited for small datasets.
From the data collected when racing with LTV-MPC, the lateral forces Fy,i can
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be solved from two linear equations with two unknowns, extracted from (1):
{

v̇y = (Fy,f cos δ + Fy,r) /mt − ψ̇vx

ψ̈ = (Fy,f lf cos δ − Fy,rlr) /Iz

. (5)

We choose to learn the dimensionless lateral tire force error with features
[|T |, |α|]� ∈ R

2. The absolute value is taken to form a denser dataset. The
corresponding dataset output is calculated as [(|Fy,r,true|−|Fy,r,pred|)/Fz,r] ∈ R

1,
where Fy,r,true is solved based on vehicle states from sensors, Fy,r,pred is solved
based on predicted states from LTV-MPC. The predicted mean dimensionless
error from GPR is denoted as g. The predicted variance is omitted. It is assumed
that the characteristics of the front and rear tires are the same. Consequently,
the error model learned from the rear tire is also applied to the front tire:

F k
y,f = fMF,f (αk

f ) − Fz,f
g(0,|α̂k|)

α̂k
f

αk
f ,

F k
y,r = fMF,r(αk

r ) − Fz,r
g(|T̂k|,|α̂k|)

α̂k
r

αk
r ,

(6)

where T̂ k and α̂k
f are reference points at which to evaluate error compensation at

the k-th discrete time in the prediction horizon. Same as linearization, these ref-
erence points are calculated from the solution of the last control step. The slope
of the learned dimensionless error is multiplied by the slip angle to establish a
linear-time-variant relationship between error compensation and state variables.
If the compensation is only added as a constant, its effect will be mitigated after
linearization. For reference slip angle smaller than 0.0025, the error compensa-
tion is set to zero.

The friction ellipse constraint is adjusted in (7) based on the predicted dimen-
sionless error at zero torque and maximum slip angle. Negative signs in (6) and
(7) before g are because Dy has a negative value. For faster prediction, sparse
GPR is adopted in this work. We refer the readers to [6] for more details.

ηc =
[

Fx

μcDxFz,r

2
+ Fy,r

(μcDy−g(0,|α̂max|))Fz,r

2
]�

. (7)

4 Algorithm Validation

4.1 Simulation and Experimental Setup

The simulation is performed on the racing track of Formula Student Autonomous
China (FSAC) and executed on a laptop with an i7-12700H CPU and 32 GB
RAM. We use a 7-DOF vehicle dynamics model [7] for simulation. The experi-
ment is performed on a self-designed thin track with a steer-by-wire and drive-
by-wire electric chassis and executed on a Jetson AGX Xavier with Carmel CPU.
The directions of both tracks are clockwise. The following parameters are set to
be the same for both the simulation and experiment: discretization step Δt = 34
ms, prediction horizon H = 60, and control horizon Hc = 30. Limited by the per-
formance of Carmel CPU, the control frequency f is set to 100 Hz for simulation
and 50 Hz for experiment.
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4.2 Results

In the simulation, the proposed LTV-MPC is compared with an NMPC imple-
mented using CasADi [1] with identical parameters. The NMPC also uses iden-
tical objectives and constraints (both nonlinear). The comparisons are plotted
in Fig. 2, which shows the accuracy and improved computational speed of the
proposed LTV-MPC. The lap time is 44.57 s for LTV-MPC and 44.29 s for
NMPC (a slight increase of 0.6 %). The average computation time is 2.5 ms for
LTV-MPC and 66 ms for NMPC (96 % reduction).

Fig. 2. Comparisons between the proposed LTV-MPC and NMPC on simulation tra-
jectory, friction ellipse constraint violation, and computation time.

The robustness of the proposed LTV-MPC is validated in real-world exper-
iments. The experiment data are exhibited in Fig. 3. The maximum velocity is
set to 4 m/s and small adhesion coefficients are chosen for safety concerns.

Fig. 3. Experimental trajectory and vehicle state plots with two different µc.

With μc set to 0.3, two simulation scenarios are used to validate the learning-
based LTV-MPC: low adhesion (true adhesion coefficient is also 0.3 but with tire
combined slip property not modeled in LTV-MPC) and higher adhesion (true
adhesion coefficient is 0.7). The corresponding GP error models and the effects in
mitigating model mismatch are shown in Fig. 4. The lap time in the low adhesion
scenario is 44.57 s without GPR and 44.64 s with GPR (safer after learning the
combined slip property). The lap time in the higher adhesion scenario is 44.16 s
without GPR and 43.23 s with GPR (2% faster after learning).
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Fig. 4. GPR error models and the effects in mitigating model mismatch.

5 Conclusions

This work first presents a time-optimal LTV-MPC with min-time objective func-
tion and friction ellipse constraint. The proposed LTV-MPC is further combined
with GPR to learn the lateral tire force error.

The efficiency, accuracy, and robustness of the proposed LTV-MPC are val-
idated in simulation and experiment. The GPR error model successfully learns
from the simulation data and improves the control performance. Experimental
validation of the learning-based LTV-MPC will be performed in our future work.
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