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Fast Optimization-Based Trajectory Planning with
Cumulative Key Constraints for Automated Parking

in Unstructured Environments
Zijun Guo, Yuanxin Wang, Huilong Yu, Member, IEEE, and Junqiang Xi, Member, IEEE

Abstract—The optimization problem for trajectory planning
becomes intractable as the dimensions of collision avoidance
constraints increase. Existing methods either avoid unstructured
environments or use simplified constraints that sacrifice a portion
of the solution space. To tackle the intractability while preserving
the feasible region, we introduce trajectory planning with cumu-
lative key constraints (TPCKC), with which we won first prize
in the trajectory planning competition of automated parking
(TPCAP). In the proposed method, only the violated vertex-to-
polytope constraints are treated as key constraints and added to
a collision avoidance constraint set. Iteratively, an optimization
problem with the constraint set is solved, and its solution is
checked for new collisions. The cumulation of constraints ends
when the solution, restricted by key constraints only, is collision-
free. The proposed method is compared with three optimization-
based representatives on the TPCAP benchmarks. Practical
real-time performance in all tested cases, together with the
highest success rate and trajectory quality, is achieved with the
proposed method. Besides simulation, TPCKC is also validated
in a real-world experiment on an electric chassis platform under
environmental changes.

Index Terms—Automated parking, motion planning, trajectory
planning, obstacle avoidance, nonlinear programming.

I. INTRODUCTION

A. Background

MOTION planning in autonomous driving serves as a
bridge between behavioral decision making and vehicle

control [1], [2]. A typical application of motion planning is
automated parking, the goal of which is to navigate the vehicle
from its start pose to an end pose amid obstacles [3]. The
parking environments are perceived as unstructured or poorly
structured when the obstacles are cluttered [4] or irregularly
placed [5], as illustrated in Fig. 1. These obstacles weaken the
road structures and narrow the drivable areas, which makes
planning more challenging [6]. Confronted with unstructured
environments, search-based [7] and sampling-based [8] meth-
ods are proposed to compute collision-free paths. However,
these path planning techniques focus on feasibility instead
of optimality [9], resulting in coarse paths difficult for low-
level controllers to follow. Aided by optimization, trajectory
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1Fig. 1. A simple example of unstructured parking environments (Case 11 in
[14]). The trajectory is planned with the method proposed in this work. Note
that the vehicle and obstacles in the visualization may overlap slightly due to
the existence of line width.

planning techniques that generate not only paths but also
corresponding vehicle states improve the drivability of the
planning results [10], [11]. The downside to optimization
is higher computational time, mainly due to the nonlinear
constraints for boundary conditions, vehicle kinematics, and
collision avoidance [12], [13].

B. Related Works

The methods for optimization-based trajectory planning in
unstructured environments can be roughly divided into two
categories: methods that preserve the feasible region and
methods that sacrifice a portion of the feasible region.

In the first category, mixed integer problems or nonlinear
constraints are formulated to describe collision avoidance
exactly. In [15], the feasible region is divided into a sequence
of convex polytopes, and a mixed integer linear programming
problem is formulated. One and a half minutes is required to
solve in a 20-obstacle environment. With no integer variables,
a unified optimization method is proposed in [16] using tri-
angle area criterion. However, the calculation of area involves
taking absolute values, which is non-differentiable and hard
to solve. To address this issue, a group of methods called
Optimization-Based Collision Avoidance (OBCA) [11], [17],
[18] provides smooth formulations of distance and signed
distance between two convex sets aided by auxiliary dual
variables. Problems of reverse and parallel parking with less
than 5 regularized obstacles can be solved within seconds,
which is perceived as real-time performance in practice. How-
ever, fast solving in unstructured environments still cannot be
guaranteed, which owes to the intractability caused by the
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increased number of nonlinear constraints. Although different
initialization strategies [19], [20] are proposed to alleviate the
intractability, the planning time is still relatively high.

In the second category, the nonlinearity in collision avoid-
ance constraints is reduced or transformed to convexity at the
cost of a portion of the feasible region. To compensate for
the cost, methods in this category are usually iterative. The
signed distance function is linearized, and a sequential convex
optimization approach is adopted in [21] for the motion plan-
ning of a wide range of robots. Later, an iterative algorithm
using the convex feasible set, a convex corridor from the start
pose to the end pose, is proved to guarantee local minima and
used on mobile robots [22]. Iteratively, a convex feasible set
is found, and a convex optimization problem is solved until
convergence. The aforementioned corridor method is applied
to automated parking in unstructured environments in [5],
where the rectangular vehicle is approximated by two disks
and two box-like corridors are constructed at every iteration to
restrict the disk centers from collision with dilated obstacles.
With the feasible region truncated, the trajectory quality of
the above methods can hardly surpass that of methods in the
first category. In some tight cases, the above methods may
fail due to the geometric approximation of the vehicle shape.
While these drawbacks are attributed to the corridor meth-
ods, the knowledge-based simplification of collision avoidance
constraints seems promising. In [23], the vehicle is restricted
to a convex collision-free region containing the end pose in
the last period of the parking maneuver, resulting in an easy-
to-solve problem. Many extremely tight problems considered
infeasible by methods in the first category can be solved
successfully. However, this method is not general and relies
on prior knowledge.

The proposed method in this work, although iterative,
belongs to the first category where the feasible region is
preserved. Compared with the previous ones in this category,
our method solves significantly faster by enforcing fewer
and simpler constraints and generates trajectories of higher
quality due to reduced nonlinearity. Like the others in the first
category, our method outperforms the general methods in the
second category in trajectory quality. The reasons have been
discussed above.

C. Motivations

It is redundant to enforce collision avoidance constraints
with every obstacle in the environment at every discrete time,
as faraway obstacles have no chance of collision. We take steps
further by arguing that 1) even in close vicinity, obstacles on
one side may be omitted when the vehicle tends to knock into
those on the other side; 2) some vertex-to-polytope constraints
may be omitted when the chances of collision are slim. The
above arguments suggest that we impose only key constraints.
But how to identify them?

In this work, we treat only violated constraints as key con-
straints. Suppose we solve for a time-optimal trajectory around
a search-based initial guess without considering obstacles,
chances are that the solution is collision-free. If not, the col-
lision information should be collected, and the corresponding
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Fig. 2. Illustration for the relationship of Section II, III, and IV.

constraints, i.e. key constraints, should be enforced. As new
collisions may arise after the next problem-solving, the process
should iterate, and the key constraints should cumulate until
the final solution becomes collision-free. A video for algorithm
visualization is available in the supplementary material.

D. Contributions

The contributions of this work are summarized as follows.
1) We formulate two kinds of vertex-to-polytope con-

straints for collision avoidance to substitute the complete
constraints between two convex sets. The formulation is
smooth, downscaled, and targeted at vertex intrusion.

2) Instead of imposing all collision avoidance constraints,
we only enforce key constraints in the optimization
problem. We show that the reduction of constraint di-
mensions improves both the computational speed and
trajectory quality.

3) We propose a cumulative scheme, which is able to cap-
ture key collision avoidance constraints in few iterations.
The scheme is compared on 18 cases selected from the
TPCAP benchmarks [14] and validated in a real-world
experiment.

E. Organization

The remainder of this work is organized as follows. Sec-
tion II formulates the vertex-to-polytope collision avoidance
constraints. Section III describes the optimization problem
compatible with the proposed constraints and scheme in Sec-
tion II and IV. Section IV elaborates on the cumulative scheme
to capture key constraints. The relationship of Section II, III,
and IV are depicted in Fig. 2. Section V performs experiments
and analyzes results. Section VI concludes this work.

II. VERTEX-TO-POLYTOPE CONSTRAINTS

In this section, two kinds of vertex-to-polytope (V2P) con-
straints for collision avoidance are formulated, replacing the
complete constraints between two convex sets implemented
in OBCA methods [11], [17], [18]. The change from OBCA
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Fig. 3. Illustration for the change of collision avoidance constraints (top:
OBCA, bottom: V2P). A and B correspond to the formulations in Section II-A
and Section II-B, respectively. The V2P constraints can be applied to any
vertex. Vertices in the figure are chosen for illustrative purposes.

to V2P, illustrated in Fig. 3, is a simplification that enlarges
the feasible region. The reasons are twofold: 1) only vertex
intrusion is considered, neglecting the overlapping of convex
polytopes without vertex intrusion; 2) vertex intrusion can be
tackled directly without redundancy, which makes it possible
to leave out unnecessary constraints.

The V2P formulation is applicable if the vehicle and obsta-
cle shapes are known and can be approximated by polytopes.
In practice, it can be achieved with sophisticated perception
techniques, e.g. point cloud segmentation and convex hull
computation [24]. The polytopes, if non-convex, should be
decomposed into convex ones, e.g. by using [25]. In this work,
it is assumed that all the obstacles are static.

A. Constraints Between a Vehicle Vertex and an Obstacle

Convex polytopes can be properly expressed using the half-
space representation. A 2D convex-polytope obstacle with
nonempty relative interior is given by

O =
{
q ∈ R2 : Aq ⪯ b

}
, (1)

where q is a point in the convex polytope, A ∈ Rl×2 and b ∈
Rl are parameterized by the obstacle edges, and l corresponds
to the number of edges. In this work, ⪯ and ⪰ are used to
express element-wise inequalities ≤ and ≥, respectively, and
0 represents a vector of zeros.

For a given vehicle vertex p(x) ∈ R2, where x represents
the vehicle states, the distance between the vertex and the

obstacle dist(p(x),O) is obtained by first finding a point q
in the obstacle O that is closest to p(x), then calculating
the distance between p(x) and q. Therefore, the distance is
the optimal value of the following optimization problem [26,
Section 8.1]:

min
q

∥s∥

s.t. Aq ⪯ b

p(x)− q = s,

(2)

where ∥ · ∥ = ∥ · ∥2 is the Euclidean norm, q is a point in
the obstacle O, s is the vector connecting p(x) and q. The
dual problem of (2) can be derived via Lagrangian duality.
The Lagrange dual function is given by

g(λ,µ) = inf
s,q

(
∥s∥+ λ⊤(Aq − b) + µ⊤ (p(x)− q − s)

)
=− λ⊤b+ µ⊤p(x)

+ inf
s,q

(
∥s∥ − µ⊤s+

(
λ⊤A− µ⊤) q) ,

(3)
where λ ∈ Rl, λ ⪰ 0 and µ ∈ R2 are vectors of auxiliary dual
variables. For vector s, the function ∥s∥ − µ⊤s is bounded
below at zero when ∥µ∥ ≤ 1 [26, p.93], and for point q, the
linear function (λ⊤A − µ⊤)q is bounded below only when
it is identically zero, i.e. µ = A⊤λ. Therefore, (3) is further
simplified as

g(λ,µ) =

{
(Ap(x)− b)

⊤
λ ∥A⊤λ∥ ≤ 1

−∞ otherwise.
(4)

Then we have the dual problem of (2):

max
λ

(Ap(x)− b)
⊤
λ

s.t.
∥∥A⊤λ

∥∥ ≤ 1

λ ⪰ 0.

(5)

Since O is a convex polytope with nonempty relative
interior, strong duality holds. The optimal values of prob-
lems (2) and (5) are identical and equal to the distance
dist(p(x),O). Consequently, the collision avoidance con-
straint, i.e. dist(p(x),O) > 0, can now be concisely expressed
using the dual vector λ as

(Ap(x)− b)
⊤
λ > 0, ∥A⊤λ∥ ≤ 1, λ ⪰ 0. (6)

B. Constraints Between an Obstacle Vertex and the Vehicle

The formulation of a 2D convex-polytope vehicle involves
rotation and translation from the origin, which is expressed as

E =
{
q′ ∈ R2 : q′ = R(x)q + t(x),Gq ⪯ g

}
, (7)

where q is a point in the original convex polytope, q′ is a
point in the convex polytope after rotation and translation,
R(x) ∈ R2×2 and t(x) ∈ R2 respectively denote the rotation
matrix and the translation vector, both calculated from the
vehicle states x, G ∈ R4×2 and g ∈ R4 contain the parameters
describing a rectangle. When determining these parameters, if
we place the vehicle with its rear axle center at the origin and
with zero yaw angle, we have
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Fig. 4. Schematics of vehicle geometry and state variables.

G =

[
1 0 −1 0
0 1 0 −1

]⊤
, g = [lw + lf , lb, lr, lb]

⊤
, (8)

where lw, lf , lr, and lb, depicted in Fig. 4, correspond to the
wheelbase length, the front overhang length, the rear overhang
length, and half of the vehicle width, respectively. For a given
obstacle vertex p ∈ R2, the optimization problem to solve for
the distance dist(p,E) now becomes

min
q

∥s∥

s.t. Gq ⪯ g

p−R(x)q − t(x) = s.

(9)

Similar to Section II-A, the dual problem of (9) can be
derived by analyzing the Lagrange dual function:

g(λ,µ) =− λ⊤g + µ⊤ (p− t(x))

+ inf
s,q

(
∥s∥ − µ⊤s+

(
λ⊤G− µ⊤R(x)

)
q
)
,

(10)
where ∥µ∥ ≤ 1 and µ = R⊤(x)G⊤λ are required for
the infimum to be bounded below. Because the rotational
transform preserves the Euclidean norm, the first condition
becomes

∥∥G⊤λ
∥∥ ≤ 1. The dual problem is then written as

max
λ

(
G

[
R⊤(x)(p− t(x))

]
− g

)⊤
λ

s.t.
∥∥G⊤λ

∥∥ ≤ 1

λ ⪰ 0,

(11)

which agrees with intuition: transform the obstacle point p
inversely and perform optimization with the original convex
polytope defined by G and g. Here, λ ∈ R4,λ ⪰ 0 is the dual
vector. Finally, the collision avoidance constraints between an
obstacle point and the vehicle are formulated as(

G
[
R⊤(x)(p− t(x))

]
− g

)⊤
λ > 0,

∥G⊤λ∥ ≤ 1, λ ⪰ 0.
(12)

III. PROBLEM FORMULATION

The cost function and other necessary constraints are de-
scribed in this section to formulate an optimization problem
that is compatible with the V2P constraints in Section II and
the cumulative scheme in Section IV.

A. Kinematic Constraints

In parking maneuvers, vehicles are generally slow for safety
concerns. With negligible wheel slip angles, the vehicle motion
in low-speed (typically less than 5 m/s) scenarios can be
fully captured by the kinematic bicycle model [27], which is
expressed in continuous time as

ẋ = f(x,u) =


Ẋ

Ẏ

Ψ̇
v̇

δ̇

 =


v cos(Ψ)
v sin(Ψ)

v tan(δ)/lw
a
ω

 , (13)

where x = [X,Y, Ψ, v, δ]⊤ ∈ R5 and u = [a, ω]⊤ ∈ R2 are
vectors of the state and input variables, (X,Y ), v, and a are the
global position and the magnitude of velocity and acceleration
of the rear axle center, Ψ is the heading, δ and ω correspond to
the steering angle of the front wheel and its angular velocity,
respectively. The states in vector x are illustrated in Fig. 4.

The implicit Euler method is adopted in this work for
discretization. The states and inputs at time k, xk and uk,
and the states at the next discrete time xk+1 are related by

xk+1 = xk + hf(xk+1,uk), (14)

where h is the time step of discretization and is determined
by T and N introduced in Section III-C.

B. Trust Region and Scaling

To improve solving efficiency and avoid large deviations
from the warm-start positions, the method of trust region
is adopted. At time k, the vehicle position is limited by a
bounding box, and other vehicle states are limited by their
lower and upper bounds, which are written as

XWS
k − c

Y WS
k − c
Ψ
−v
−δ

 ⪯

Xk

Yk

Ψk

vk
δk

 ⪯

XWS

k + c
Y WS
k + c
Ψ
v

δ

 , (15)

where parameter c determines the size of the bounding box,
(XWS

k , Y WS
k ) is the position in warm-start states xWS

k at time
k, which is given more details in Section IV-A, the underline
and overline denotes the lower and upper bounds of the
corresponding variables. Note that in this work, Ψ and Ψ are
set according to the headings of the start pose ΨS and end
pose ΨF : Ψ = min(ΨS , ΨF )−π, Ψ = max(ΨS , ΨF )+π. The
above formulation is expressed succinctly as

x(xWS
k , c) ⪯ xk ⪯ x(xWS

k , c). (16)

The lower and upper bounds of the input variables can be
found in Section III-E.

As scaling can be used to further accelerate convergence
[28], both the states and inputs are scaled based on their
value ranges. Specifically, the scale factors for states sx =
[c, c, π, v, δ]⊤ and the scale factors for inputs su = [a, ω]⊤.
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C. Cost Function

The cost function or objective function J ∈ R is designed to
minimize maneuver time T , improve passenger comfort a2 +
v2ω2 [29], and decrease steering effort δ2. Collision avoidance
is treated as hard constraints and not incorporated into J . The
cost function is written as

J = w1T +

∫ T

t=0

(
w2

(
a2 + v2ω2

)
+ w3δ

2
)
dt, (17)

where scalars w1, w2, and w3 are corresponding weights.
The Lagrangian, i.e. the integration term, is discretized

using the explicit Euler method. Therefore, the cost function
can be reformulated as

J(T,X,U) = w1T +

N−1∑
k=0

(
w2

(
a2k + v2kω

2
k

)
+ w3δ

2
k

)
h,

(18)
where h = T/N is a variable derived from T , N denotes
the number of input vectors, X = [x0, . . . ,xN ]⊤ and U =
[u0, . . . ,uN−1]

⊤ are the aggregation of the state and input
vectors over the entire parking maneuver. The value of N is
assigned at warm-start in Section IV-A.

D. Collision Avoidance Constraint Set

The collision avoidance constraint set at time k, denoted as
Xk, consists of two subsets XA

k and XB
k , corresponding to

the V2P constraints formulated in Section II-A (V2P type A)
and II-B (V2P type B), respectively. The aggregation of the
set and subsets over the parking maneuver are denoted as fol-
lows: X = [X1, . . . ,XN−1]

⊤, XA = [XA
1 , . . . ,XA

N−1]
⊤, and

XB = [XB
1 , . . . ,XB

N−1]
⊤. No collision avoidance constraints

are imposed on the first and last discrete time.
The subsets contain different index information that is used

to specify obstacles, obstacle vertices, and vehicle vertices.
For V2P type A, XA

k = {. . . , (i, j,m), . . .}, with i for the ith
obstacle in the environment, denoted as Ai and bi, m for the
mth dual vector λm, j and k for the jth vertex of the vehicle
with states xk, denoted as pj(xk) and given below:

p0(xk) =

[
Xk + (lf + lw) cosΨk − lb sinΨk

Yk + (lf + lw) sinΨk + lb cosΨk

]
,

p1(xk) =

[
Xk + (lf + lw) cosΨk + lb sinΨk

Yk + (lf + lw) sinΨk − lb cosΨk

]
,

p2(xk) =

[
Xk − lr cosΨk + lb sinΨk

Yk − lr sinΨk − lb cosΨk

]
,

p3(xk) =

[
Xk − lr cosΨk − lb sinΨk

Yk − lr sinΨk + lb cosΨk

]
,

(19)

where j = {0, 1, 2, 3} denotes the front left, front right, rear
right, and rear left vertex, respectively.

For V2P type B, XB
k = {. . . , (i, j,m), . . .}, with i and j

for the jth vertex of the ith obstacle, denoted as pij , k for
xk, and m for λm.

E. Optimization Problem

Navigating from the start states xS to the end states xF ,
the trajectory planning problem is formulated as a nonlinear

programming problem by combining (6), (12), (14), (16),
and (18). The problem features high-order cost function and
nonlinear constraints (nonlinearity due to the presence of
trigonometric functions in kinematic constraints and the ro-
tation matrix R(xk)). The problem is formulated as

min
T,X,U ,Λ

J(T,X,U)

s.t. x0 = xS , xN = xF

∀ k ∈ {0, . . . , N − 1} :
xk+1 = xk + hf(xk+1,uk), u ⪯ uk ⪯ u

∀ k ∈ {1, . . . , N − 1} :
x(xWS

k , c) ⪯ xk ⪯ x(xWS
k , c)

∀ (i, j,m) ∈ XA
k :

(Aipj(xk)− bi)
⊤
λm > 0,

∥A⊤
i λm∥ ≤ 1, λm ⪰ 0

∀ (i, j,m) ∈ XB
k :(

G
[
R⊤(xk)(pij − t(xk))

]
− g

)⊤
λm > 0,

∥G⊤λm∥ ≤ 1, λm ⪰ 0,
(20)

where constraints with > 0 are implemented as ≥ 10−6 in
solvers, Λ = [λ0, . . . ,λM−1]

⊤ is the aggregation of M dual
vectors, u = [−a,−ω]⊤ and u = [a, ω]⊤ are the lower and
upper bounds of the input vector, the rotation matrix R(xk)
and the translation vector t(xk) are expressed as

R(xk) =

[
cosΨk − sinΨk

sinΨk cosΨk

]
, t(xk) =

[
Xk

Yk

]
. (21)

IV. TRAJECTORY PLANNING WITH
CUMULATIVE KEY CONSTRAINTS

A. Warm-Start Strategies

Search-based initialization using Hybrid A⋆ [7] (HA) is
adopted in this work. The resultant path is then segmented
based on driving directions, i.e. straight or reverse. For each
path segment, we calculate the trapezoidal velocity profile
[30], which is time-optimal under acceleration and velocity
bounds, and resample the path evenly in time using spline
interpolation. The time interval for resampling is denoted as
hr, and N is the number of time intervals. After resampling,
the initial guess for maneuver time THA = hrN . At discrete
time k, Xk, Yk, Ψk, vk, and ak can be initialized using the
above method. The remaining δk and ωk are initialized with
zeros, as steering-related variables are not determinative [4].
The aggregation of the above initial guesses are denoted as
XHA and UHA.

The warm-start for (20) are denoted as TWS, XWS, UWS,
and ΛWS. All variables except the dual get the warm-start
values either from the search-based initialization or from the
previous solution, denoted as T opt, Xopt, and U opt. The choice
of warm-start values in each iteration is described in the next
subsection.

The dual Λ can be warm-started by solving a second-
order cone program (SOCP) originated from (5) and (11).
All the dual variables are initialized only once to improve
performance. In every iteration, only the newly introduced dual
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variables Λ⋆ are optimized with the current warm-start states
XWS. The optimized dual variables are stored in a list denoted
as ΛSOCP. The SOCP is given as

max
Λ⋆

N−1∑
k=1

∑
(i,j,m)

∈XA⋆
k

(Aipj(x
ws
k )− bi)

⊤
λm +

N−1∑
k=1

∑
(i,j,m)

∈XB⋆
k

(
G

[
R⊤(xws

k )(pij − t(xws
k ))

]
− g

)⊤
λm

s.t. ∀ k ∈ {1, . . . , N − 1} :
∀ (i, j,m) ∈ XA⋆

k : ∥A⊤
i λm∥ ≤ 1, λm ⪰ 0

∀ (i, j,m) ∈ XB⋆
k : ∥G⊤λm∥ ≤ 1, λm ⪰ 0,

(22)
where X ⋆ is a new collision avoidance constraint set with its
subsets at time k denoted as XA⋆

k and XB⋆
k .

B. Cumulative Scheme

The method of TPCKC to solve the automated parking
problem in unstructured environments is summarized in Alg. 1.
Symbol←k represents the value assignment for every possible
k. A video for algorithm visualization is available in the
supplementary material.

With an empty collision avoidance constraint set, the first
problem is warm-started with the search-based initialization.
If its solution is not collision-free, then the next problem,
i.e. the first intermediate problem, is still warm-started with
THA, XHA, and UHA. This is because the solution to the
first problem tends to be either collision-free or severely
collided, the latter being unfit for warm-start. All the other
problems in the loop are warm-started with the solution to
the previous problem. The loop breaks when 1) the final
solution is collision-free; 2) one intermediate problem-solving
fails. The second condition happens only in extremely tight
cases. Adjustments to handle this condition are discussed in
Section V-D.

In the loop, if the previous solution is collision-free, the
problem is solved again based on that solution. This step, i.e.
the final problem (trial), is necessary as we find that better
warm-start and adjusted trust region may lead to improved
trajectory quality. If the solution of this step is not collision-
free, which rarely happens in practice if we shrink the trust
region so that c3 < c2, the loop continues until another final
problem (trial) is solved without collision.

If collisions are detected in the previous solution, then
the corresponding constraints are enforced. The detection of
collisions, i.e. violation of constraints, is simple. For V2P type
A, the jth vertex of the vehicle at time k collides with the
ith obstacle if Aipj(x

opt
k ) ⪯ bi. For V2P type B, the jth

vertex of the ith obstacle collides with the vehicle at time k
if G

[
R⊤(xopt

k )(pij − t(xopt
k ))

]
⪯ g. The method of k-d tree

can be used for potential speedup.
We notice that if constraints are imposed only on the

discrete time when a collision is detected, k for example, then
in the next solution, a collision may arise at time k + 1 or
k−1. Therefore, the propagation of constraints is introduced in

Algorithm 1 Trajectory Planning with Cumulative Key Con-
straints (TPCKC)

1: Xk ←k ∅, c← c1,Λ
WS ← [∅],ΛSOCP ← [∅], iter = 0,

TWS ← THA,XWS ←XHA,UWS ← UHA;
2: T opt,Xopt,U opt ← solve (20); ▷ The first problem
3: while True do
4: iter = iter + 1
5: if Xopt is not collision-free then
6: Collect the collision info. to a new set X ⋆;
7: Use Alg. 2 to propagate X ⋆;
8: if iter > 1 then
9: TWS ← T opt,XWS ←Xopt,UWS ← U opt;

10: else
11: TWS ← THA,XWS ←XHA,UWS ← UHA;
12: end if
13: Initialize Λ⋆ with (22) and append to ΛSOCP;
14: Xk ←k Xk ∪ X ⋆

k , c← c2,Λ
WS ← ΛSOCP;

15: T opt,Xopt,U opt ← solve (20);
▷ Intermediate problems

16: else
17: c← c3, T

WS ← T opt,XWS ←Xopt,UWS ← U opt

18: T opt,Xopt,U opt ← solve (20);
▷ The final problem (trial)

19: if Xopt is collision-free then
20: return T opt,Xopt,U opt;

▷ The final solution
21: end if
22: end if
23: if problem-solving fails in Line 15 or 18 then
24: return fatal flag;
25: end if
26: end while

Algorithm 2 Propagation of Constraints
1: Make a copy of X as Y
2: for k ∈ {1, . . . , N − 1} do
3: for i ∈ {−np, . . . , np} \ {0} do
4: if 1 ≤ k + i ≤ N − 1 then
5: Yk ← Yk ∪ Xk+i

6: end if
7: end for
8: end for
9: Finish propagation with X ← Y

Alg. 2. All the collision avoidance constraints are propagated
across time, which means that the states in a time interval
before and after the collision are also constrained. The time
interval is denoted as hp, and np = round(hp/hr).

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Simulation Setup

Simulations were implemented in Python and executed on
an i9-12900KF CPU with 64 GB RAM. OpenBLAS is used
with the maximum number of threads set to 1. The symbolic
framework for numeric optimization CasADi [31] with the
primal-dual interior point solver IPOPT [32] and the linear
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TABLE I
PARAMETRIC SETTINGS ON ALL TESTED CASES

Parameter Description Setting

lw Wheelbase length 2.8 m

lf Front overhang length 0.96 m

lr Rear overhang length 0.929 m

lb Half of the vehicle width 0.971 m

v Upper bound of velocity 2.5 m/s

a Upper bound of acceleration 1 m/s2

δ Upper bound of steering angle 0.75 rad

ω Upper bound of steering angular velocity 0.5 rad/s

w1, w2, w3 Weights in the cost function 100, 5, 10

hr Time interval for resampling 0.04 s

hp Time interval for Alg. 2 0.5 s

c1, c2, c3 Parameters for the trust region 1, 1.5, 1 m

solver HSL MA97 [33] is used to solve the optimization
problem (20). The modeling language for convex optimization
problems CVXPY [34] with the lightweight conic solver
ECOS [35] is used to solve the SOCP (22).

The benchmarks for automated parking in unstructured
environments TPCAP [14] is used to validate the proposed
method and perform comparisons. 18 cases are selected from
a total of 20, omitting Case 7 and Case 19. The two cases
are omitted for the same reason: an initialization better than
HA is needed to solve them properly, which is beyond the
scope of this work. Specially, Case 7 can be solved by [23]
on the basis of prior knowledge. We refer the readers to the
benchmark paper [14] for an overview of all cases.

The parameters used in all tested cases are listed in Table I,
with the last three rows for TPCKC. All the other parameters
in Table I are stipulated in the competition rules1 of TPCAP,
and we keep their values in the simulation.

B. A Close Look at Case 20

Case 20 (underground mine scenario) is chosen because it
best illustrates the proposed method. The planned trajectory
is exhibited in Fig. 5 and 6, and the method of TPCKC is
visualized in Fig. 5. Based on the visualization, the following
should be noted.

1) Non-convex obstacles are divided into convex ones.
2) The bounds on the state and input variables are met.
3) Vertex intrusion is prevented successfully by the two

kinds of V2P constraints.
4) Due to resampling, the planned trajectory of TPCKC is

fine-grained with N = 396 in Case 20. Therefore, the issue of
potential violation of constraints between sampled points has
been mitigated. For techniques to guarantee continuous-time
trajectory safety, we refer the readers to [21] and [36].

5) We assume that the obstacle or vehicle shapes have
already been dilated with a safety distance. Therefore, no
further dilation is performed, and in the planned trajectory, the
gaps between the vehicle and obstacles can be tiny. Objects

1https://tpcap.github.io/benchmarks/
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1Fig. 5. Simulation result and TPCKC visualization of Case 20 (underground
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1Fig. 6. States and inputs plot for the final solution of Case 20 with states in
blue and inputs in red. The vehicle positions and headings, which have been
visualized in Fig. 5, are not included in this plot.

in the visualization may overlap slightly due to the existence
of line width.

6) TPCKC is able to capture key constraints and omit the
irrelevant. At the time when the driving direction switches,
no collision avoidance constraints are enforced even though
obstacles exist in close vicinity. Also, when turning, only one
side is constrained for the vehicle and obstacles.

7) Only one intermediate problem-solving is needed in Case
20, which means that the key constraints are fully captured
using the first solution. In the prescribed trust region, the first
solution naturally bends toward a number of obstacles, from
which the collision information is collected.

8) Due to the use of maneuver time and its relatively high
weight in the cost function, the velocity profile of the planned
trajectory closely resembles the trapezoidal velocity profile,
which is used in the resampling of HA result in Section IV-A.

C. Analysis of All Tested Cases

The visualization of planned trajectories in all tested cases is
available at https://github.com/Easy121/visTPCKC. The com-

https://tpcap.github.io/benchmarks/
https://github.com/Easy121/visTPCKC
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counted based on the final problem.

putational time of TPCKC, plotted in Fig. 7, is evaluated by
summing the IPOPT CPU time consumed on all the problems
in Alg. 1, i.e. the first problem, intermediate problems, and
the final problem. The dimensions of collision avoidance
constraints for OBCA (all constraints between convex sets)
and TPCKC (cumulated V2P constraints) are compared in
Fig. 8. From the two figures, the overall performance of
TPCKC is analyzed as follows.

1) Practical real-time performance is achieved if we define it
as solving with success in less than 5 s, as TPCKC completes
with 0.03 s minimum, 2.41 s maximum, and 0.61 s in average.

2) The efficiency of TPCKC to capture key constraints is
proved. All tested cases are solved in no more than 4 iterations,
i.e. 3 times of collection of constraints, and all the final
problems (trial) are solved without collision. In other words,
all tested cases are solved at most 5 times (3 with collision
and 2 collision-free, i.e. Cases 4, 10, 13, 15, and 16) and at
least twice (the first and the final, i.e. Cases 5 and 17).

3) The first problem, i.e. trajectory planning without colli-
sion avoidance constraints in a trust region, is fast in all tested
cases. Then the computational time of subsequent problems

varies. The variance seems to be related to how tight the
problem is, i.e. environment-sensitive. For instance, Cases 9
and 10, where both sides of the vehicle are constrained at tight
bottlenecks, require the most computational time.

4) Compared to OBCA, the collision avoidance constraint
dimensions of TPCKC decrease in all tested cases, which
shows the effectiveness of TPCKC in reducing constraints
and simplifying problems. The decrease is significant in some
cases where the obstacles are more cluttered, i.e. Cases 4, 5, 6,
16, 17, 18, and 20, and relatively small in some others where
the obstacles are more regularized, i.e. Cases 1, 2, 3, 8, 9, 13,
14, and 15. Note that in Cases 5 and 17, the dimensions of
collision avoidance constraints are zero, which means that in
these cases, the trajectory planning without collision avoidance
constraints in a trust region is sufficient to generate a collision-
free result.

D. Influences of Parameters

There are 5 parameters for TPCKC, 2 related to the time
interval: hr and hp, and 3 related to the trust region: c1, c2,
and c3. All these parameters should be larger than 0.

The time interval for resampling, hr, determines how fine
the planned trajectory is. Smaller hr leads to larger N , which
increases the computational time but smooths the trajectory.
Additionally, for extremely tight cases, decreasing hr helps to
solve successfully as vehicles need more delicate maneuvers
to navigate through tight obstacles.

The time interval for the propagation of constraints, hp,
decides the influence across time of each detected collision.
If hp is infinitely large, then a collision at time k between
the vehicle states xk and an obstacle vertex pij leads to the
enforcement of collision avoidance constraints between all the
vehicle states X and the vertex. The decrease of hp results
in a less constrained problem for every iteration. But the risk
of more rounds of collection of constraints increases: when
setting hp = 0, an increase in the number of iterations is
witnessed in 12 cases, while Cases 5, 11, 12, 17, 18, and 20
are not influenced.

For the trust-region-related parameters, we recommend set-
ting c1 < c2, c3 < c2, and adjusting them based on c2. The
increase of the three parameters should be treated with caution,
as it may lead to severe violation of constraints or change of
homotopy class. Also, c2 should not be too small, otherwise,
the problem might be infeasible.

E. Comparisons with Existing Optimization-Based Methods

The proposed method, i.e. TPCKC, is compared with three
optimization-based representatives on the 18 selected cases.
The methods for comparisons are H-OBCA [11], TDR-OBCA
[18], and a corridor method [5]. A summary of comparisons
is listed in Table II, where the three methods are abbreviated
as H, T, and C, respectively. The details of computational
speed and trajectory quality can be found in Table III. The
computational speed is indicated by the CPU time for solv-
ing trajectory planning problems, and the trajectory quality
is represented by the cost value calculated from (18) with
weights specified in Table I. The visualization of all the
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TABLE II
A SUMMARY OF COMPARISONS

H T C TPCKC

Time-optimal Yes Yes Yes

Preserves feasible region Yes Yes Yes

Iterative scheme Yes Yes

Success rate 83% 78% 22% 94%
Tops in comput. speed 4 3 0 11
Tops in traj. quality 9 a 0 0 16
Minimum CPU time (s) b 0.164 0.154 16.136 0.027
Maximum CPU time (s) b 17.931 20.566 37.659 2.413
Average CPU time (s) b 3.793 2.641 23.221 0.611
Average cost value (-) b 1840 1601 3786 1324

a 7 tops shared with TPCKC (this work).
b Measured on cases that are successfully solved.

tested cases solved by different methods is available at https:
//github.com/Easy121/visTPCKC.

The main difference between the two OBCA methods is
that TDR-OBCA cancels the maneuver time from the cost
function and converts the boundary conditions to cost terms for
potential speedup. This makes TDR-OBCA the only method
that is not time-optimal. The corridor method, as described in
Section I-B, belongs to the second category that sacrifices a
portion of the feasible region. Similar to TPCKC, the corridor
method is iterative.

For the sake of fairness, we try our best to align the initial-
ization strategies of the four methods and reserve differences
when necessary. HA is used as the search-based initialization
for H-OBCA, TDR-OBCA, and TPCKC, while an improved
HA, FTHA, is used for the corridor method as they are
bonded in [5]. All the search-based results are resampled
using the method described in Section IV-A and the same
parameter hr. This causes the corridor method to deteriorate,
as in [5], N is set to 50 for all cases and the CPU time
averages 0.91 s. The choice of solver for trajectory planning
is the same for all the methods (IPOPT with HSL MA97)
since it has been tested to be the best for all. For initializing
the dual variables, IPOPT is used for H-OBCA and TDR-
OBCA. A faster dual initialization strategy proposed along
with TDR-OBCA is not used because the initialization process
is not timed for comparisons. The basic cost function and
corresponding weights are identical for all the methods. In
TDR-OBCA and the corridor method, cost terms converted
from constraints are added. In H-OBCA, TDR-OBCA, and
TPCKC, constraints with > 0 are all implemented as ≥ 10−6.

From the results in Table II and III, the following can be
summarized.

1) TPCKC is the fastest method under all evaluation in-
dexes, i.e. tops in computational speed, minimum, maximum,
and average CPU time.

2) Practical real-time performance is only achieved with
TPCKC. All the other methods have a maximum CPU time
larger than 15 s. The most time-consuming cases for the OBCA
methods are Cases 6 and 20, all belonging to the cases with
more cluttered obstacles. For the corridor method, Case 10 is

Fig. 9. Experimental platform based on a steer-by-wire and drive-by-wire
chassis with two 0.5×0.5×0.7 m cardboard boxes as obstacles.

solved for the longest time because the bottleneck is blocked
by the obstacle dilation, and the vehicle makes a detour.

3) The speedup with TPCKC is most conspicuous in two
kinds of cases: cases where the obstacles are more cluttered,
e.g. Case 20 with 97.4% CPU time reduced, and cases where
the trajectory planning in a trust region with few or no collision
avoidance constraints leads to a collision-free result, e.g. Case
5 with 97.1% CPU time reduced and Case 11 with 77.8%
reduced.

4) TPCKC has the highest success rate. As TPCKC neglects
the rare case of overlapping of convex polytopes without
vertex intrusion, it fails in Case 14 with a needle-like obstacle.
Such obstacles are challenging for the other methods as well,
with H-OBCA failing in Cases 13 and 15, and TDR-OBCA in
Cases 14 and 15. In Case 18, H-OBCA fails to find a trajectory
that satisfies all the constraints, and the infeasibility flag is
returned. All the tested cases are solved without a fatal flag
by TDR-OBCA. However, deviations from the end states are
found in Cases 1 and 18, resulting from the relaxation of the
boundary conditions. The failures of the corridor method are
mainly due to the obstacle dilation.

5) TPCKC has the highest trajectory quality, with 16 tops
and the smallest cost value on average. One reason is that
TPCKC involves rounds of warm-start with increasing quality,
which helps find better solutions than the methods only
warm-started once with search-based initialization. Also, the
nonlinearity is reduced due to fewer constraints, and better
local minima can be found. In 9 cases, TPCKC manages to
find better solutions, and in 7 cases, the solutions of TPCKC
and H-OBCA agree with each other. Nevertheless, it is still
possible for TPCKC, a nonlinear method, to converge to poor
local minima, e.g. Case 4.

F. Real-World Experiment

We have also validated the ability of TPCKC to generate
collision-free and easy-to-follow trajectories in a real-world
experiment. The experimental platform is shown in Fig. 9.
Two irregularly placed and moveable cardboard boxes are used
as obstacles to construct a general unstructured scenario with
possible environmental changes. The box shape also helps to
ease the burden of perception and guarantee accurate detection
from all directions. The parameters that are changed for the
experiment are updated in Table IV. Note that the maximum

https://github.com/Easy121/visTPCKC
https://github.com/Easy121/visTPCKC
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TABLE III
COMPARISONS OF COMPUTATIONAL SPEED AND TRAJECTORY QUALITY

Case ID 1 2 3 4 5 6 8 9 10

CPU

Time

(s)

H-OBCA 0.2805 0.1819 1.4144 10.3260 1.9501 17.9309 0.2322 1.9165 0.5272
TDR-OBCA – c 0.2007 0.4414 3.9377 1.5794 2.1609 0.1539 0.3279 0.9246

Corridor – d – d – d – d – d – d – d – d 37.6589

TPCKC (this work) 0.7957 0.2917 0.2688 0.5522 0.0465 0.4283 0.2206 2.4128 1.5544

Cost

Value

(-)

H-OBCA 1413.25 1447.77 1335.49 1212.36 802.62 1340.39 1261.22 9079.29 1451.93
TDR-OBCA – c 1682.01 1630.17 1322.69 965.06 1652.84 1546.17 2041.47 1985.26

Corridor – d – d – d – d – d – d – d – d 6234.04

TPCKC (this work) 1269.33 1391.92 1335.49 1421.33 802.57 1340.04 1261.22 1820.56 1451.93

Case ID 11 12 13 14 15 16 17 18 20

CPU

Time

(s)

H-OBCA 1.0464 0.1643 – a 0.2373 – a 3.9636 2.8767 – b 13.8490

TDR-OBCA 0.4539 0.5889 0.5474 – a – a 4.6281 0.4649 – c 20.5658

Corridor 22.0575 16.1358 – d – d – d 17.0309 – d – d – d

TPCKC (this work) 0.1009 0.0705 1.2618 – e 0.8245 0.9668 0.0273 0.1989 0.3609

Cost

Value

(-)

H-OBCA 1545.89 1223.21 – a 1390.52 – a 1648.48 696.11 – b 1754.15
TDR-OBCA 1949.85 1546.81 1563.78 – a – a 1608.28 785.61 – c 2130.67

Corridor 2078.04 1601.87 – d – d – d 5230.59 – d – d – d

TPCKC (this work) 1545.89 1223.21 1460.85 – e 1316.26 1539.21 696.11 879.19 1754.15
a Solves with success but vertex intrusion is detected with a needle-like obstacle.
b Terminates due to Infeasible Problem Detected error.
c Solves with success but converges to a local minimum where xN deviates from xF .
d Search fails because xS or xF is inside the obstacles dilated with the two-disk approximation.
e Solves with success but overlapping between the vehicle and a needle-like obstacle without vertex intrusion is detected.

TABLE IV
UPDATED PARAMETRIC SETTINGS FOR THE REAL-WORLD EXPERIMENT

Parameter Setting Parameter Setting

lw 1.474 m v 0.6 m/s

lf 0.32 m a 0.45 m/s2

lr 0.225 m δ 0.32 rad

lb 0.56 m ω 0.45 rad/s
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1Fig. 10. Planned trajectory before and after the environmental change and
closed-loop trajectory tracking performance. The obstacles are dilated with a
distance of 0.15 m.

steering angle of the chassis is smaller than the one used
in the simulation (Table I). For localization, the chassis uses
an accurate global positioning system integrating GNSS and
motion sensors. For perception, with the point clouds from

a 32-channel lidar, the boxes are detected as obstacles using
ground segmentation [37], point cloud clustering [38], and L-
shape fitting [39]. The trajectory planning is performed on a
Jetson AGX Xavier with Carmel CPU.

In the experiment, once the chassis starts following a
planned trajectory, one obstacle is moved near. When a future
collision is detected, the chassis stops, replans, and follows
a new trajectory. The planned trajectory is tracked using
an offset-free nonlinear model predictive controller, which
will be introduced in our future work. The results of the
experiment are plotted in Fig. 10. The reliability of TPCKC
under environmental changes and its ability to generate easy-
to-follow trajectories are shown. A video of the experiment
and the corresponding ROS [40] visualization is available in
the supplementary material.

VI. CONCLUSIONS

In this work, we formulate two kinds of vertex-to-polytope
(V2P) constraints and propose the method of trajectory plan-
ning with cumulative key constraints (TPCKC) to simplify
the trajectory planning problem while preserving the feasible
region. The V2P constraints serve to target vertex intrusion
and make it possible to omit irrelevant constraints on trivial
vertices. The method of TPCKC builds on the V2P con-
straints and serves to capture key constraints systematically
and cumulatively. The efficiency and effectiveness of the
proposed method are validated based on 18 cases selected from
TPCAP, benchmarks for automated parking in unstructured
environments. With the nonlinearity reduced, the proposed
method excels in both computational speed and trajectory



11

quality when compared with three optimization-based repre-
sentatives. Practical real-time performance on all tested cases,
together with the highest success rate and trajectory quality, is
achieved. Additionally, a real-world experiment that validates
the proposed method is conducted.

Limitations and future work: While the simulations and
experiment show the superior performance and validated reli-
ability of TPCKC in unstructured environments, environment-
sensitive variance in computational time and the problem
of poor local minima still arise and should be dealt with.
Furthermore, trajectory planning confronted with perception
uncertainties and dynamic environments are two important
future directions, which may require joint research efforts in
perception and decision-making systems.
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